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Abstract

Information capacity is determined for the additive Gaussian channel
when the constraint is given in terms of a covariance different from that
of the channel noise. These results, combined with previous results on
capacity when the constraint covariance is the same as the noise covariance,
provide a complete and general solution for the information capacity of
the Gaussian channel without feedback. They are valid for both
continuous-time and discrete-time channels, and require only two assumptions:
the noise energy over the observation period is finite (w.p. 1), and the
constraint is given in terms of a reproducing kernel Hilbert space norm.
Applications include channels with ambient noise having unknown covariance,
and channels subject to jamming. The results for the mismatched channel

differ markedly from those for the matched channel.
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e Introduction

%:3 The information capacity of the Gaussian channel without feedback, subjecct
N

:éi to a generalized energy constraint, is determined in {1]. In that work, the
3 f’ constraint is given in terms of the covariance of the channel noise process.
\;;2 However, there are many situations where one may wish to determine capacity

K,

Eg% subject to a constraint determined by a covariance that is different from that
o of the channel noise. Examples are jamming or countermeasures situations, or
:Q;: when there is insufficient knowledge of the natural environment.

fiﬁﬁ Channels where the covariance of the noise is the same as that of the
§"¥ constraint will be called matched channels; otherwise, the channel is said to
o be mismatched (to the constraint). In this paper, the capacity of the mis-
?ﬁgz matched Gaussian channel is determined. Results for a restricted class of
S

S mismatched channels are given elsewhere [2]. Various special cases of the
:fxi mismatched channels have been treated previously [3] - [5].

E?Ef The results for the mismatched channel differ significantly from those
E;:' for the matched channel. A discussion of these differences follows the proof
;:;: of the main result,

JS&? An example of the type of problem to which the results given here apply
’iE; is the following. Suppose that one wishes to obtain the information capacity
f;?; of the additive Gaussian channel with output
o Y(t) = [§ BIXD(s)ds + N(©),  t in [0,T]

o o |

VoA where (X(t)) is the message, B is a coding function, (N(t)) is zero-mean

E;;; Gaussian noise independent of the message (X(t)), and the constraint is

s

ﬁif li[g HﬂX](t)]Zdt < P. The solution to this problem is given in

? Proposition 1 and Theorem 2 (if the process (B[X](t)) is restricted

EE:} to lie in a finite-dimensional subspace) and in Theorem 3 (if there

-:;ri
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}ﬁﬁ is no restriction on the dimensionality of the process (B[X](t)).

ﬁii If, for example, the signal detection problem of N vs. W is non-singular

‘_‘ (where (W(t)) is the Wiener process), and if rN(t,s) - min(t,s) is a

iii covariance function, where Iy is the covariance of (N(t)), then the capacity
ht% for the unrestricted dimensionality signal will be P/2, the same as if

:;L. (N(t)) were the Wiener process.

\35 The relationship with the Wiener process arises because the above con-
:E: straint is given in terms of the norm of the RKHS for the covariance function
"zi min(t,s): fg §Z(t)dt = Ihrﬂé when y is in LZ[O,T] and ”"'W is the nomm
f«? of the reproducing kernel Hilbert space for min(t,s). When the detection
i:  problem N vs. W is singular, then the capacity can be smaller than, equal to,
'j§§ or larger than P/2. The expression for the capacity will depend on the

:ES% covariance of (N(t)) and the value of P. This dependence of the expression

e

A

J when the signal process is not constrained to lie in a finite-dimensional
, w »

’ jﬁ subspace. For the matched channel, the capacity then cannot be attained;

-

or
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a that is, when the constraint is given in terms of the norm of the RKHS of

.

for the capacity on the value of P does not arise when the channel is matched;

the channel noise (N(t)). Another major difference arises in this problem

for the mismatched channel, it can be attained in some situations and not
attained in others, depending again on the covariance of (N(t)) and the
value of P, In this example, it can sometimes be attained if rN(t,s) - min(t,s)

is not a covariance function; otherwise, it can never be attained.
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N Definitions and Structure }

A
) The channel to be considered is the independent additive Gaussian
-

\

.r:: channel without feedback. The channel output is Y = A(X) + N, where N is
s
:_ ':';'.‘. the Gaussian noise, X is the message process (independent of N}, and A(X)

: is the transmitted signal. The mathematical structure is defined below,

as in [1].

The message X is represented by a probability (measure) Hy on a measurable

space (Hl, B [Hl]), where B [Hl] is a o-field of subsets of Hl' The noise

:f-::: N is represented by a probability My on a measurable space (HZ’ IB[HZ]). The
b:).‘q"‘ .

:-,_:_ transmitted signa 1s defined by a 1 2 measurable
N itted signal A(X) defined b B[H,]1/B[H,] bl
Al
'h'!; coding function A from Hl into Hz. The received signal (channel output) Y
\l
:;‘\': is represented by the probability Wy on (HZ, ]B[HZ]); since Y = A(X) +N,

o , . .

:::i ;xY((‘) = ux@uN{(x,n): A(x)+n e Ct for C in B[Hz] > HyBly being the product
’ probability. The channel probability Myy On the product measurable space
;.;:_':;‘ (ll xxl ]B[llleZ]) is defined by u“(t) uxauN{ (x,n): (x,A(x)+n) € C!} for
NS
,. C in B[HleZ]. The average mutual information is then I[uXY], where ””.\Y] 2w
) if 1t is false that Hyy is absolutely continuous with respect to
PR
"';3 uxe,uY (u“ < “XQUY)’ and otherwise

e

?, "l‘_J r ! du\,\. j

i:. l“‘xyj - ] log mi (x,)')dUA\-Y (x,¥).

- H, xH Xyl

P 1772
B
i
-:.‘:; The information capacity is then sup I[uXY] , where Q is a set of
!

[{ <% admissible pairs (uX,A).

.-

o H) and H, will be taken as real separable Hilbert spaces with B[H,] the

:f:_.'_ Borel o-field of Hi' <e ->1 will be the inncr product for Hl’ <e,+> the inner

Y

S product for H,, Il -||1 and ||+|| the corresponding norms. uy Will be assumed to have
2 .. i 2
< zero mean and finite second moment: fHZHXH duy(x) <. For H, = L,(0,T) or ¢,,
.;-'.,:

o

o

“a‘
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this corresponds to an assumption of finite energy. In these cases, py is
induced by a path map from an underlying probability space (2,8,P):
“N(C) = P{w: N(w) € C} for C in B[H,], where (Nt) is a measurable stochastic

process with almost all paths in H,. If H, = LZ[O,T], and (Nt) has zero-mcan

and covariance function ry, then fHOHxl|2duN(x) = fé rN(t,t)dt.

A covariance operator in H, isx (here) any bounded linear operator on
il, which is also symmetric, non-negative, and trace-class. A probability
. on (H,,.B[HZ]) has such a covariance operator if and only if u has finite

)
second mokient 3 then, f“ ExiTdi(x) = Trace R Ir Ry where Roas the
2
5

covariance operator of u, defined by (assuming now that p has zero mean)

Ru,v = IH NX,H X,V du(x).

“he covariance operator of Hy will be denoted by RN. One can assume
WLOG that ranve(nij H2 (1], so that R.\J is strictly positive and R&l exists.

For ”Z = L,[0,T], Ry can be represented by an integral operator with kerel

ffunct ion ry-

A measure o (H,, B[H,]) is Gaussian if for everv v in H,, thc map
- 9 &

x-+<x,v> defines a Gaussian distribution on R; i.e., F(a) = u{x: <x,v> < a}
defines a CGaussian distribution. It is known that there is a 1:1 relationship
petweell covariance operators in H2 and zero-mean Gaussian measures on HZ'
et R be a strictly positive covariance operator in HZ’ with R; the
nositive square root of R; range(R%) is a separable Hilbert space under the

1

1
inner product UV = R ‘u, R ?v>.

L,[0,T] is the space of all Lebesque-square-integrable real-valued func-
tions on [0,T]; LZ[O,T] consists of the cquivalence classes formed from

clements of LZ[O,T].
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Constraints

Supposc that Rw 1$ a strictly-positive covariance operator in “Z' 1f
1
{1, 1s infinite dimensional, then range(R%) is a proper subset of H, and is

a separable Hilbert space under the inner product

1 21
U,V = Locubp><v,b>/ay = <Ryfu, Ryfve

where (bn) are c.o.n. (complete orthonormal) eigenvectors of RW’ and a, are
corresponding eigenvalues.

If H, = LZ[O,T], then Ry has a representation as an integral operator
with kernel . Ty can be defined as a measurable covariance function on
[0,T]x{0,T] and then defines a RKHS HW
of functions on {0,T], for which Ty is the reproducing kernel, with inner
product (u,v)w. Let [u] denote the equivalence class in LZ[O,T] defined
by the function u in LZ[O,T]. Then [u] is in range(R%) if and only if [u]
is generated by an element u ﬂlfﬂw Moreover, (u,v)w = <[u],[v]>w. Thus,
in all that follows, one can consider LZ[O,T] as a concrete example of

1
H,, identify Hg, with range(R&), and consider <+,+>, and as the inner

“1
product and corresponding norm for HW'

The Wiener process is frequently used to model a white noise channel by
formally considering the "integrated'" channel. If W is the Wiener proccss on

[0,T], then x in H, has RKHS norm Hxﬂi = fg [i(t)]zdt; a function x on [0,T]

belongs to Hw if and only if x is absolutely continuous, vanishes at the origin,
and has derivative in LZ[O’T]° In modeling the "intcgrated' white noisc channel
by the Wiener process, the constraint EHx[%_iPT is then an average power con-
straint on the original signal x. Of course, this constraint has also becn
used if (Wt) is the actual (not "integrated') channel noise [6].

A constraint which is appropriate in the casc of the observation time
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[0,T] when (W ) is stationary with spectral density fw is

1 X(\) <
L-ﬁjﬁ;ml— < P

where ; is the LZ—Fourier transform of the function x. From a result of

Kelly, Reed, and Root [7], for x in L7(~m’w)’

~ 2
oo |
7 [0 BRy @ - i g Il g

is the RKHS norm of

where xp i '!IW,T
W restricted to [0,T}. If (Xt) is also stationary with spectral density fS,

then with additional assumptions one has

lin 7 T EIXlG p = 7 )7 SO /f 01,

In general,

1in % EIX HZT = = 7 £ 0)/5,00100.
]- (2]

An appropriate constraint is thus

2
E, 1ACOIl < P (A-1)

where Ry is a covariance operator in HZ' This constraint will be used in
this paper; no other assumptions will be made.
If Rw is not strictly positive, then the constraint A-1 can still be

used after replacing H2 with rangeiﬁvi. One may thus suppose WLOG that
H, = range(ﬁ&i, so that Ry is strictly positive.

Mutual Information and Channel Capacity

From the results of [1], one can limit attention to cases where “A(X)

is Gaussian with covariance operator

"nlelku} (1)

AR AR R \’-. '\.“ SN
R I+ R R S TR

RN



198

j:f:j where T2 0 forn=1, Enrn<°°, {un, n21} is a c.o.n. set and (usv)x = <v,x>u.
" When “A(\() has (1) for covariance and is Gaussian then [1]

: Iyl = () £ log [1+7.]. (2)
The constraint A-1 can be written as

;_ I“‘(HRW A(.\)ll = Trace R A(\()R\\. < P. (3')
wo !

": The supremum of (2) subject to the constraint (3') is the capacity

A

;-" sought and will be denoted as CW(P); the capacity for the matched channel

‘._:_-: R“ —RV) will be denoted by CN(P)

:'- 1 1,

-;: Proposition 1: CW(P) is finite if and only if range(Rﬁ,) c range(R]f]). This is
\ equivalent to the existence of a densely-defined self-adjoint linear operator
_:f S in H,, as follows:
[ (1) S =u(r+v) lus-1

where U is unitary, V is bounded and self-adjoint, I+V is strictly-

o L 1 1

::;: positive, and R‘i = R:\ZI(I + V) *U*,

"
*- (2) I+S is strictly positive and bounded away from zero;

- (3)  RE=U(I+S)%: (A-2)
R R Rj- A2
- 1 1

:-:'_: Proof: Range(R‘/f,) S range(R%) if and only if there exists a bounded linear

operator \ in H2 such that Rw = R;?‘,(I +V)R;§[8]. This is equivalent to
R:Z = Ri\f,(l +V)I/"U* for U unitary in HZ' The constraint (A-1) is satisfied if
and only if R/\X = R LRh for C trace-class with trace C<P, Then, if
range(Rtf,) S range(RE.), RAX = R:fj(l +V)I/ZU*CU(I +V)%R;2, for bounded V and unitary

1. 1.
U, The operator (I +\V)2U*CU(I +V)? is then trace-class, with trace bounded

above hy [IT+V|[P. From [1], Cy(P) < NIT+ViIP/2,




Conversely, suppose that Cu(P) = K- «. Then every admissible (A,uy)
must satisfy Rax = RE TRE for trace T <K [1]. This implies A(X) is in
range(RE) a.e., uy [9}. If range(RE) is not contained in range(RE), then
there exists z in range(R%), z= R%u, |h1”2 = P, with z not in range(RE).
Let A=1 and take Hy Gaussian with covariance RX = zoz. Then (A, ux)
satisfies (A-1) but A(X) lies outside range(RE) with probability one. Thus,
CW(P) finite implies range(R%) c range[Rﬁ).

The above proof shows that CW(P) is finite if and only if there exists
a bounded self-adjoint operator V with R%==RN(I +\W5U* with U unitary in H,.
Suppose that Rﬁ has such a representation. Since U is unitary and Ry
strictly positive, (I*-V)'l must exist., Let S = U(I-+\0'1U* - I, so that
I+S = U(l +\7-1U*, (I-*S)l/2 = U(I +\W'%U*. Then, since
R = RI(T+ V)T = UCL+V)RE, it follows that U(T+V) 2UsR3 = U RE = (1+9)Ry,
so that (I*-S)l/2 is defined on the dense linear manifold range(RE), and

H(I-+Sf5R;xH“ = HREXHZ for all x in H I+S is obviously strictly positive

20
on its domain D(S). To prove that its smallest limit point is strictly

L

positive, one notes that the spectrum of (I +S)* is bounded beclow by

L L ok g 2 ! 2 L2
- es) g A RGRT RN IR ]
in i ’ an » = = T = > .
o REK IR | RENE aev R s VT

which is strictly positive, since V is bounded. This proves (1) - (3)

when CW(P) is finite; the converse is clear.
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'ifj Remark 1: Suppose that H2 = L,[0,T] and that the set of admissible (A, n\)
o i} ‘
:iij consists of all such that A(X) is absolutely continuous with LZ[O,T]

I

derivative a.e. uy, and E fg [A(X)]Z(t)dt < P, The information capacity

CW(P) will then be finite if and only if e is such that range(RE)
- contains all equivalence classes in I.,[0,T] that are generated by abso-

G:z, lutely continuous functions with LZ[O,T] derivative.

Esgz It can often be assumed that the operator S is bounded, from

E&g physical considerations. That is, S will be bounded if and only if

gf“ range(R%) c range(RE). In jamming applications, N may have the form

ig; N = J+W, where W is the original channel noise and J is a jamming noise
;iif independent of the ambient noise W. Since W will typically include wide-
_!ﬁ? band receiver noise, it is not plausible that the sample functions of the
fz;i jamming noise J should be more irregular than those of the ambient noise

W, The path properties of N and W are determined by the properties of

i, the RKHS of N and W (see, e.g., [10]). Thus, if the paths of W+J are

.?' not to be more irregular than those of W, then it is necessary that

5:35 range(RE) c range(R%). These statements, which can be rigorously justified,
C;? imply that one can often assume S to be bounded. However, it is desirable
Eg} to state the results here in maximum generality, so S will not be assumed
;f?? to be bounded. -

}g; When H, is infinite-dimensional, & will denote the smiallent Timit

%ii point of the spectrum of S, the operator defined by (A-2). The limit

.
\]

points of the spectrum of S consist of all eigenvalues of infinite

LA ]
'

®1

L

N

H}ﬁf continuous spectrum [11]. A key consequence of § being a limit point is
| :_:.‘-_:

j.}i: that there 1s a sequence of o.n. elements (fn) such that [{(S- Ol)fn,[ >0
-ﬁ

'*2; [11, p. 364]). From Proposition 1, 1+6 > 0. Moreover, a real number C
'4.:'\.

:‘;; with 0< C< 1+6 can be in the spectrum of I+S if and only if C is an
a4

- cigenvalue of {inite multiplicity for I +%5. Thus, “ is the only possible

g
.
| -
-’
.
." e
.

-

muitiplicity, limit points of distinct eigenvalues, or points of the

. . e e
R
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B~
:ﬁ limit point of the eigenvalues of S strictly less than 6. D‘n’ n>1} will
o
L . . .
_:" denote the eigenvectors of S that are strictly less than 6; of course, this
: set can be empty. Similarly, {en, n>1} will always denote an o.n. set of
boe

:‘; H2 eigenvalues of S corresponding to the eigenvalues {An, n>l}: Se n = Mene n>1.
*.":

>
» The case 6 = » requires special treatment. It is simplified by the

{
oy following result.
,4-2
L

-;; Proposition 2: Suppose that 8 = », Then I +V must be compact, and

-

o K

' {An, n>1} is an infinite set. lMoreover, P + § )‘i < KAK for some finite K,
i

}_'.‘:', any fixed P >0,

i

:. Proof: 6 = « implies that zero is the only limit point of the spectrum of
I+V, so that I+V is compact. Since I+V is self-adjoint, this operator
::-f: has a c.o.n. set of eigenvectors. I+V is strictly positive, so that its
"'— -

- eigenvalues are {(1+ xn) 1, n>1}, with M >-1.

K

- To see that } A; +P < Kayp for some finite K, suppose not. Then

e 1
o K
S P P,U‘K - x.) for all K>1. This cannot hold, since AK- )‘1 > oo,
@) 1 ' B

s t
e

L. . ~
- (ne can now formulate the capacity problem in terms of the operator S,
"
e as follows.
E=> CW(P) is the supremum of (2) subject to the constraint (3'). Rewriting
_'.' (3') in terms of S, and using (1), one obtains the equivalent constraint
-{. N
e * n
-t vt || (1esTEur |12 < p (3)
Yy “n'n . n' -
o s 2 _ bk 112

< Setting X_ = Tn” (I1+S)2U un|| ,

ey _

-5 Gy(P) = supCa) T, log exiey )™ (4)
o n n

4 72

= where the supremum is over all sequences (X;) and c.o.n. sets {vn, nxz1}
‘ in the domain D(S) of S such that anﬁ <P, where vy = <Svn,vn>, n-1.,

o

"'"",\

o

e et et e o “ )

L S PR PR I T L B T E L R TE L R O
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l
N When S is bounded and compact, the results given here werc presented
N
s at the 1983 IEEE Symposium on Information Theory (St. Jovite, Quebec,
Canada) and are partially contained in [2]. An upper bound for the capacity
when S is bounded but not compact has been given by Yanagi [12].
I ".
E
(v
e Capacity for Finite-Dimensional Signal Space
b Proofs of the following two lemmas are given in the Appendix.
. Lemma 1: Let (Yn), n<M, be any non-decreasing sequence of strictly positive
. real numbers. Let (Xn) be any sequence of M real numbers. Fix P>0 and
(] define
7 ) M 2
) g(LP,Y) = sup I{ O, * X/ ¥y
. N M '
; {X: & % < p}
o ~ n—
- 1
‘Then
k. K K
p g(LP,Y) = I (T v; +P)/(Ky,)
o R T A n
N K
where K<M is the largest integer such that » Y +pP > KYK. g(M,P,y) is
1 X
) wiiquely attained by (Xﬁ) such that
: w2 _ N : .
A ‘Xn= (I Yi+P)/!\—Yn n<K
o i
y L =0 n> K.
LS
4
- - . .
J Lemma 2: Let (Ai), 1<1<K, be a non-decreasing scquence of strictiy positive
X —
| rcal numbers and fix P> 0. Define a sequence (Yn) to be admissible if it is
N NN A K
o - ' DYy 2 , and Ly, Yy i
3 non-decreasing, .].{1 > iAi or all J<K, and 1y1+P > I\YK. Define
"
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K K
f,(y) = I (P+Zy;)/(Ky ). Then, for any admissible sequence (v ),
> =1 1t n n
fk(\l) < fK(k) with equality if and only if Yy T A for all i<K.

Corollary 1: Let (\).1) and (Yi), i=1,...,Mbe two non-decreasing sequences

of strictly positive real numbers. Fix P> 0, and let K be the largest
K
integer < M such that >1;Yi +P > KYK. Let (szx)’ n=1,...,M, be any sequence
M 5 J
such that = X <P, If £ v. > v. for all J<K, then
1 n i = — |

n=1 i

o1y

M 2

-1
n'n

log i-l +X

K ( K ]
<Z log |[(P+ L \).1)/K\)n)il

n=1 n=1 i=1

with equality if and only if Y, =V for n<K and

, K
X; = (Ilj\)i +P)/K - Yy n>K
=0 n->K
M 2 1 K " K
Proof: If . log (1+Xnyn ) > L log ‘(P+>Zv.)/l(\)n) , then it must also
n=1 n=1 !
K r K
strictly exceed (by Lemma 2) L log |(P+ Zyi)/(Kyn) . This contradicts
n=1 1

Lemma 1. The conditions for equality follow from lemmas 1 and 2.
[

Remark_2: If S is a bounded linear operator with a complete set of eigenvectors

K K
and non-decreasing eigenvalues 81 < .32 <..., then LBy < 2 <Svn,vn> for any o.n.
oo 1 1

SEt Vi, e,V and any K>1 [13].

" n ;.’f--‘:d,mf\'( u.ﬂ_' -'::q.‘ . :" T
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I Theorem 1:
N Supposc that H2 has dimension M<«, The capacity is then
o K '{
:: K L1‘ bl+p+}\[
o w(P) = (2) 2 log —(——A—j“
“ “w o KTF 5, |
,::f where Bl_< BySene s 3.\1 are the eigenvalues of S, and K is the largest integer < M
L i =
K e . : .
e such that £B. +P>Kg3,.. The capacity is attained by a Gaussian A (X with
e A T X)
. K i 11
covariance operator (1), where u, = Ug, and T, = |58, *P- I\BHJ (1+2)) K for
) 1
:E::: n<k, 1, 0 for n>K, and {gn, n>1} are o.n. eigenvectors of S corresponding
e to the eigenvalues (Sn). No other Gaussian “A(‘() can attain capacity. The
e o ‘ . .
. same result is obtained if H, has dimension L <« and Ma(xy s constrained to
:5:‘. nave support of dimension M« L,
Proof: Since H, is finite-dimensional, the self-adjoint operator S is
,:f- bounded and has a complete set of eigenvectors. From (4),
-
0 i 2.-1,
J . I R 2 -1 .
(,W(I)) = bllpijﬁ_ )i. log |1 +.\n'\{n ]|’ where Yn = ]_+<Svn’ Vn>, {Vn’ n<M} is a
.:\ Bl
vy
j.: c.o.n. set, and the supremum is over all such c.o.n. sets and all (xrzl) such
': Mo,
o that I X, < P. Since 8] $B8,<... <5, are the non-decreasing eigenvalues of
)
-7 J J
N2 S, by Remark 2, T [1+ <Svn, vn>] > [1+ Bn] for all J<M and any fixed c.o.n.
1 1 h
& set {vn, n<M}, The expression for Gy (P) and the unique covariance of the
] ": maximizing Gaussian MA ) both now follow from Corollary 1.
- ‘ B
s Remark 3: The result holds if dim(H,) = L<= and dim[supp(uy vy)] <M < L,
_' since in this case S again has M smallest eigenvalues.
-
=

3 f. '. l.' '.‘ l'

v

------------
.................................
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Theorem 2:

Suppose that 8<~, H, is infinite-dimensional, and support (Ha (\)) is
restricted to have dimension < M < =,

(@) If (), n>1} is empty, then Gy(P) = (/2) log [1+mr 1 (1+e)7F),
Capacity can be attained if and only if S has 6 as an eigenvalue of multipli-

city > M. In this case Cw(P) is attained by a Gaussian “\(X) with covariance (1),

where u; = Ugi and T s Pb.l_l(lw&e)‘l for i <M with {gl,...,gM} any o.n. set
in the null space of S-9I.
K

(b) 1If K)\K < ixi +P < K)‘K+1 for some K< M, then the capacity is as in

Theorem 1, with ;i =

T 1 =1,...,K, and can be similarly attained.

(¢} Let K = min(L,M), where L -1 is the number of eigenvaluex (An)~of S whose

K
value is strictly less than 6, and suppose that P+2r; - Khp. The capacity is
i<
then K
I) + 2: ( )\ j> = (3 )

(1 +0 M i=1

L(P) = 2% log l3— +U10g 1+
Cy I 7y " 2 ST(1+6)

The capacity can be attained if and only if 6 1is an eigenvalue of S

with multiplicity > M-K. The capacity is then achieved by a Gaussian Hax with

K
covariance (1), where u_=Ug_and 1_= (2%, +P-M_+ (M-K)8)(1+ 1)) 1M 1 for n<K,
n n no i n n

with Sg = A&, and {gl,...,gK} an o.n. set; and with u, = Uvn and

K
1. = (P-*iki-Ke)M 1(1+ 8) 1 for K+1 < n <M, where Svn==9Vl and Vke12 0V

n 1

is an o.n. set. The sets {ul,...,uK} and {11,...,TK} are uniquely defined for

any maximizing Gaussian A X) -
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Proof: If S > 61, then S- 61 does not have zero as an eigenvalue.
lowever, there exist [11] o.n. elements (f )in D(S) such that | (S-eD)f 1| ~ 0,

s0 that <(S-E)I)fn,fn‘- -~ 0, <an,fn\ > 8, <an,fn> ~ 6 for everv n. Thus, for

any + 0 there are o.n. clements 1’;,...,f;1 such that sctting Yl = <Sfi,fjc>,

[¢5)

< yl < 0+ for i<M. Using this sequence in (2) and (4), one obtains

i
= () Tlog [1ery)

1 I\,I 2 £ '1 1
(2) . log [L+X (T+v) '] > (3)

I[uXY]

: -1

log [1+\( (1+6+¢) 7].

—

The expression on the right of the inequality is maximized, over all ()Sf) such

M M
that 1 ,“ < P, by defining \( = P/M, n<M. Thus, ,w(P) > (‘g)Y log [1+ (1+0+) P/M]

\)

M
for all €>0, and so CW(P) > (L) Z log [1+PM (l +0) ]. For the reverse

inequality, one notes that under the constraint Eu IIR&%A(X)HZ < P, it is
. =

shown in [1] that CN(P) = (M/2) log (1+P/M). For S>6I,

||2

.}R\. ACOE < (1es)? “R‘;J%A(X) 1%, Thus, EUXHR{;“‘A(X) llzi P implies

- - . ; P
EUV!IRN%A(X)HZ < (1+9) 1P, giving CW(P) < [%] log [1 + m], so that

Ge(P) = (W2) log [1+PM '(1+6) '],

If S=6I, with 6 an eigenvalue of multiplicity K, the above argument is
modified in an obvious way (y;= A for i=1,...,min (K,M)) to again obtain

-1 1

GeP) = (V2) log [1+PM (1+8) 1.

lo prove (b), the proof of Theorem 1 is repeated after substituting )‘i
for "')i’ 1 K+1,
For ), suppose that S has K- M eigenvalues )‘1 Teee <Ak strictly less than 0

K

and that 1. + P > Ki Cy(P) = sup  ((P,v) where

K

1 : (P] »V)

"-(“_J‘ LA - {'
..-f...i.k('d._-{u(;f

e
e

-. KRN :j
LA POy L‘L{L‘.&J&_L _5.{-. CRONES
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M -1
Cy(Ppoy) = sup l}inzl o8 D”‘i (1+ <Svys Vo) ]]’

. 2
v = {vn, nM} is any o.n. set, Os;PlfsP, and the supremum is over all (Xn)

K M
such that ¢ Xz <Py, = X2 < P. From the proot's of Theorem I and part (4),
] 1 1 n
[
3 liXi+P1+J P'Pl
Gy (Py,¥) = (%)nillog tjfrf;—z:y— + () M-K) log |1 + ™M (1+0)

> J)

J
where J <K is the largest integer such that XAi-+P1 >

1
holds for any o.n. set {Vn, nsM} in D(S), it remains only to determine the

of Pl that maximizes Cw(Pl,g) (a differentiable function of P, in [0,P}).

1
entiating, one sees that Cw(pl’X) is increasing with P1 so long as

J R J
P, < [JP + (1K) (J6 - D] 01-Ks) L. Since P, <y, - 2, the preceding
J
inequality is <atisfiel as long as GW-K+J))J+1 - xxi < P+ M-K)5 and this is
1
‘ J
satisfied because | + Iki E,JAJ+1’ AJ+1 < §. It follows that CW(Pl,!j is an

K K

increasing function of P, for P1 <IN 4+ Khge Assuming that P, > -in + K)

1 1=

K
the maximum of Cw(Pl,X) is attained uniquely by P

Using this value of P1 in the expression for Cw(P ,V), one obtains CW(P) as
1°~— \
(c). The value of CW(P) when L=M in (c) follows as in the proof of

Theorem 1, Tnhe statement on attaining capacity follows from the results

of (a) and (b).

Corollary 2:

and can be similarly attained.

If 6 = =, then CW(P) has the value given in Theorem 2(b),

Proof: Follows from Proposition 2 and the proof of Theorem 1.

.............

W AT AT VW N Wy

3 Since this result

L " MK - (M-K)7A. + QEK)Ko].
1 1

value
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o~

S Capacity for Infinite-Dimensional Signal Space

o

o
- Theorems 1 and 2 give the solution to the capacity problem when the
j:f-: dimension of the signal space is finite. We now proceed to the case of an
.o,

.I infinite-dimensional signal space.

~:-,'

{

o Lemma 3: Suppose that 9 <=, {An, nx1} is an infinite set, and P>0. Then
b K

o P+yA. > K\, for all K>1 if and only if P> £ (6-1).

n = MK 2 Z n

1 n>1

+ Tl K

A Proof: It suffices to show that Z(An -8)+P > K()\K- 8) for all K>1 implies
s 1

l‘.-\

':' Spee- \n] < P. Suppose not. Then there exists K>1 and A>0 such that

b4 N K

.:\-’ p+ l(,\n- ©) = -4, Thus [¢- >‘K+1] > [-Sli(xn- 8) - P]/K = A/K. Suppose

1 KN

o . . oY < < - -y - - - h

| ‘K‘*P] > /K for 1<p<N. Then [¢ '\K+N+l] > | ; (\n 0) - P]/(K+N)

K+N

- = [a- = (‘«n- €)]/(K+N) > [A+NAo/K}/(K+N) = A/K. Thus, the induction hypothesis
vl K+1 -

: would vield that [¢ - \K+N] > 4/K for all N> 1. However, 8 is the smallest
e : e
:.’_’_: limit point of the spectrum of S, and since O‘n) is a bounded infinitc sequence,
.:'.
\3:.; (f.\n) must contain a limit point. Thus, 6 - )‘K+N > A/K for all N>1 would mean
(L
4 that (An) has a limit point strictly less than 8. This contradiction implics
oY K

2 that P+ X(An- 8) = -A< 0 must be false.

o 1 -

L "
1 (.l -

..j

;::jj Lemma 4: Suppose that §<e and S-9I is negative-definite with an infinite
(: set of strictly negative eigenvalues

o

Vo

. 146 P+3%()x_-6)

i (a) IfP > 5(e-A ), then Cu(P) = % T log 5t & ._.ITE__
[ n n n
Y.
D ::J'
1 a"ks

VA

)
?}

et
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NI
J: The capacity can be attained if and only if P = z(e-xn). It is then
) n
O attained by a Gaussian Hax with covariance operator (1), where
:::_-Z: = Uen and T, = (e-xn) (1+>‘n)'1 for all n=1.
o
‘-:J,
L K ):Ai + P + K
1 .
o, - =1 o]
‘.\ (b) If P < er(O An), then Cw(P) »;,n;zjllog Kcl”‘n where K< = is the
o~
oy K
largest integer such that P+ I) n > K- The capacity can be attained
1 — B
‘~‘ - - - -
- by a unique Gaussian u AX with covariance operator (1), where u = Uen and
o X
W, B
:"y-n ZA' + P + K
C_ T=11 -1 for n<K
:::_. n Kil+>\ni -
v.\-.
:'-\.:‘ . =0 for n>K.
b n
. "roof: (a). The fact that
'gs 1"‘6 ~l p+ Zm(Xm-e)
N 2 (P)>}310g[ +
. .-; Cu nsl 1+ ] 1+98
_ follows from (c) of Theorem 2, letting M-« in that result. To
o
:': prove the reverse inequality, suppose that C,(P) is strictly greater
o Ys SUpp q
> -":
{‘-j. than its value as given in (a). Then for ¢ in (O,CW(P)) there exists
';'-' . € - . = ..l £ L ¢ e
o a Gaussian Hax with covariance RAX = ZTn[RNiun] ® [Pf‘un] where {un, n-1}
VN n N
\'_'
_f-: is a c.o.n. set, all T;zo, ET;H(I*-S)U*U;‘H < P, and
‘.‘! n
-::':'
::,i:"
.IQ'
AT
."-
A
¢ 5
J 0 e .
o J‘J'. ". .: .‘- u- J; !’.‘." ) $"n-- _:- :. .;f- 'f :"..Q(‘ '{'q' -",'1:"-:"-:-:--:" ..-.. .-".".-.'“;': —--. -.:'o.: }-I-.j'-’ I“’n';“:; ‘:‘. ISR
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s "

Ry CW(P) =% 7 log (1+ Tn) +¢. Since £ log (1+ rﬁ) is non-decreasing with |
.'n‘ n 1

::?, M, for some ¢ >0 there must exist M® <« such that

S

o M P+3 (A -6)
N _ 1+a ] m''m

‘ LT log (1+1) > 17 log |5 + (5)
NN 1 n n-1 [l“‘nl T+a
_\_:-:j The LHS of (5) is the value of the information when “A(\') has covariance
- ‘

::-:‘ operator

\ ‘ M € '/ '2

8 Rag) = L TnRNUn @Ry, -
-7 n=1
x,,. From Theorem 2(c), the LHS (5) can be no greater than
.:-"- P{’:

1+P+ (7\ -8)
Y " .

n . ‘Z’EIOQ 149 ] , M Jog i=1

A 5 T+x .

.t 1 *An z . M(1+68)
,,." As M~ », this last expression converges upward to RHS (5). Thus, the

incquality (5) cannot hold,

Ny To see that the capacity is attained as stated in (a), one notes that
! "v{
2 . from (2) the Caussian measure with covariance (1) will achieve capacity
Ny
: if and only if
- P+31 () _-9)
_ 1+6 m-m
- T log (1+7) =< log [1+ X 1 M (6)
E-." n n
L
‘N and
‘ IT.n(1+ )n) < P, (7)
(-7~
koL the latter requirement following from the definition of (szl), Corollary 1,
- ;
and Remark 1. Both (¢) and ( 7) are satisfied if T, c (B-An)(lﬂn) 1
:'}.\ all n>1 and Z(%-An) = P, Conversely, if (Tn) satisfies (6), then
S
'\5_\
N Y
50 -
oy p+ “‘m()‘m_p)
-: —T+ 5 irz]: (rn+xn+rn,\n~e)/(1+'9),orPiXTn(l+xn),

n

K . . . ~ - I
with equality if and only if L )\n"‘Tn/\n = 8 for all n>1. If (Tn)

PESERTALUERENEN
AR IRARY

Wt
L S R SN N

also satisfies ( 7), then necessarily P o= .‘Iln(l + )‘n)’ and so

3|

:':::f. Tn"’ An'f 'rn)n = ¢ for all n>1. Thus, if (rn) satisfies both (6) and
e .

2 (7), 1y = (=) (0) 7! for all n>1, and P = (02 ).

. n

.

"
.
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i=1 (8)

D). CP) >k

follows from (b) of Theorem 2. Suppose that CT‘,(P) > RHS (8), Then

by (4) there exists a c.o.n. set {vn, n>1} and a sequence (Xg) with
infinite number of non-zero terms (using (b) of Thcorem 2) such that

2 -1
RHS (8) < 4 rzl log [1+X (1+<Sv ,v > ) ] (9)

5
with ©X7 < P.  Since RHS( 9) is finite and the sum of non-negative
n

terms, there must exist M <« such that

M -
RHS (8) <4 T 1log [1+Xr21(1+<Svn,vn> ) 1]. This contradicts (b)
n=1

of Theoren 2.

Lemma 5: If g<o« and S>s6l, then CW(P) = 2-(1%)7 .

Proof: Cy(P) > P(1+ 9)—12-1 follows from part (a) of Theorem 2 by letting
M > », To prove the reverse inequality, one notes that for the constraint

= URDE AN < (1+2) 1P, the capacity Cy([1+8]71p) is P(1+8) 127!
A < P &N

A‘UX'
. -4 2 . . “l ey 112 -1
[1, Theorem 2}. Since E HRW AX)||® < P implies E ||R,\1 AX))|® < (1+8) P,
X - by -
optimization w.r.t. the former constraint is over a smaller set than w.r.t. the

latter constraint; thus CW(P) < C’\J[(1+ e)'lp].

!
The capacity for channels with an infinite-dimensional signal space

can iow be given.

Theorem ~: Suppose that § <, H, is infinite-dimensional, and dim[sunp(iy) ]
1s not constrained.

(a) If {An,nzl} is not emmty, and Iin(ﬂ-ln) < P, then

‘ (lac P+ (O 0)
GuPY =% 7 Tog *Lmn} e

.........
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() If {xn, n>1} is not empty, and P < zn(e-xn), then there exists a

K
K K TyrPeK
largest integer K such that i,\is*P > K, and Cw(P) = l/znzllog —K'(ITY;;)_
P

(c) 1If {)‘n’ n>1} is empty, then CW(P) = AEL)

(d) In (a), the capacity can be attained if and only if Zn(e-An) = P.
It is then attained by a Gaussian Hax with covariance operator as in (1),
where u, = Uen and T, = (6- )\n) (1+)‘n)-1 for all n =1. 1In (b), the canacity

can be attained by a unique Gaussian Hax with covariance onerator (1),

K
TA.+P+K
i

- ! . . -
whereun—Uen and 1n—m 1 for n<K; 1 0 for n>K. In

(c), the capacity cannot be attained.

Proof: From the preceding, one must find sup h log [1+1,], where (Tn)
is a non-negative summable sequence, subject to the constraint

LT 1+ <USU*un,un>] < P, where {un, n>1} is any c.o.n. set in Hy, and
RZ = RZ(I+S)?U*, with U wnitary.

Let Q be the projection operator onto the (closed linear) subspace spanned

B
[T

by {Uen, n>1}, where {en, n>1} are eigenvectors of S- 61 corresponding to

B
.
o

.

strictly negative eigenvalues. Let Q' be the projection onto the orthogonal

.
.
Y%

complement of range(Q) Range(Q) is obviously an invariant subspace for

b Aaad

N " . ,I;

Ugs - +1)u* and thus for USU*; since USU* is sclf-adjoint, r:mgc(QL) is also

v
?

invariant for UsuU*,

£ » .
@
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e
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a_e l-

wa

L od




ACAR 250 AL AN R Sadiiad Thail - Sl Be dialh Wl At iy LAFRA AR e N A Ak i At it Rt e S - CAPAP_aNd AREL g atd i S s Lk e AtEnic Andl el ihnl Al el Sl '(‘—
.

l‘) oy
R

< N
i

v
r
[N
.

22

ll:
v
s
y %

.
LI

P
4
eyt
s

s "1 T

vy

The set of covariance operators T = XTnuno;un satisfying the above constraint

consists of those T such that Trace T!Q[Q+QUSU"Q]Tli = Pl and

Y el o ~direr®ad1ls _ . . ;
Trace T#[Q"+QUSU'Q"]T? < P- Pl, where P1 = Pl(T) is contained in [0,P].

Thus, the capacity problem is to determine sup sup Trace log (1+7T),
P, in [0,P] A.nA
1 1772
where
A; = A{(P)) = {covariance operators T: Tr "I%Q(I +USU*)QT1”1’ = P}
and
- - . YL * Y
A, = A,(P;) = {cov. operators T: Tr TXQ (I +USU QT2 < P - P, ).
Now, sup sup Tr log (I1+T)
P1 in [0,P] AIMZ
< sup sup Tr log (I+T1) + sup Tr log (I+T2) .
P, in [0,P] | A A,

It is shown below that this inequality is actually an equality.

Proof of (a). First suppose that “‘n’ n>1} is an infinite set, and fix

P1 in [0,P]. Suppose that Z(B-An) > P By Lemma 3, there exists a largest

1
K
integer K such that ) _+P > K)‘K' Sup % Trace log (I+T) is then (from nart
1n - A (P
11
MK ]
K % )\1+p1+KY
;= [
(b) of Lemma 4) % I log l_—i_('l_TTT— . From Lemma 5,
n=1 }_ n
sup ,, Trace log (I+T) = 4 (P-Pl) (]+9)—1. Thus, for this value of Pl,
" K
oA +P,+K
=1 £ 1 -1
sup !5 Trace log (I+T) = C+(P1,K) T~ % % log N GETRER l4(P~P1)(1+e) .
AjnA, n=1 L n’
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aﬁ C, (Pl,h) 3% IeET)] whose sign is determined by that
i, +P.o+K
{1 1
K _ K K
of K - Pl - i\‘i’ since :17)i+P1+K > 0 (because i‘»i+P1 ~ KAK and )K > -1).
K
Pl+ Ili\i < KAK+1 < K6, so €, is inCreasing for Pl increasing when
K K K+1
Kig = Pl +fl.>\i < K>‘K+l . Define P1 = -i£1>\1+ (K+ 1)>‘K+1' Then
K
K L N 1 A T e
2L+(Pl,i\) = nil log T \n + 153 . Using the inequalities

o '\K+2 - \K+1 and 1+ '\I\’+2 ~ 0, C+(Pk,l\') 1s seen to be a strictly increasing

function of K. Since (- - ‘n) - P, K(%- ,\K) -+ 0, and thus
K MK+l T
lim P7 = 1im |- 2 (x. - 8) + (K+1) (A =6)t = x(o- ).
x 1 K !_i=1 i K+1 1 i

This gives as an upper bound for the capacity, for all P such that Py« s(e - xn),
n

P-35(6-2.)
i K r1+9 n
lin C (P7,K) = % I log -—.,4-1/ [__.__]
K + 2n Ll‘*)\n_‘ 2 1+6 |

Since P > (% - \n) , there exist P1 values satisfying the constraint

with P1 >z~ 'Xn)' In this case, from part (a) of Lemma 4,

(‘(p)=1v m-‘+1[w-]+;p—pl
! /25108 L1+)‘n_ 2L 1+ J 2T +6

1

- [P+ _(r_-9)]
. 1o [1'*6] . n''n
n 1+An 1+69

The last expression is thus an upper bound on CW(P) for all P, in |0,P].

1
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o From part (a) of Lemma 4, this is the value of the capacity when the operator
o S~ 8l is negative definite with an infinite set of strictly
Cal
§ .
f:: negative eigenvalues. Thus, this is the capacity when P1 =P, and so (a) is
»‘\.":&
I proved if {A ,n:1} is an infinite set.
v N
Gl Supnose next that the set {3, m21} is imlte, A S Ay € ees S < 0.
vt
;-’.;:: Proceeding as above, for P1 such that P1 + i‘ Ay < KAK, the upper bound C IEPI’J)
4 \'»_\
AN on the capacity is increased by increasing P, up to the value P1 = KAK- A
¥ 1
-::c If Pl + i Ap > KAK, then from above,
o K b k]
3 .+ +
i K it (P-P))
CP.K) =% I log |\ =frrasy | 2 " T+5
n=1 i n !
xi.} Differentiating w.r.t. P;, one sees that the derivative is positive for
o v «
0 "\i + !’1 - Ko < 0, negative for Z),i+P1 -Kn > 0, and so the unique maximum
' 1 1
3 K
:_‘ occurs for P1 = y(h - Al). This gives an upper bound on the capacity of
SN 1 .
SN pa N ,
o K loo | 1*8 ) i(xi - 8)
~ T 2 .
S n=1 n 1+
P
';';:; To show that this upper bound is actually the canacity, a scquence ('l‘i‘i) of
g !
'j::: covariance operators will be exhibited, cach satisfying the constraint, and
Y such that sun % trace log (I +T,:‘;) is equal to the umper bound. Thus, fix
S £>0,M>K -
(RES
o £ 3 M }
'-'.:: » ~0 such that « - 1+8. For M>K, define T‘I by T"1 = I T]:’ h;oaur' where
.':;: n=1
L 2 L (-2 )(1+) )-1 for l<n<K
A Y n ' n n - -
Qx K
20 P+7(h-9)
{z,:;: = 1 for E<n-M
~¢-) (i"K;‘l*Q"Ej
i
A = ) n-M.
I- -
l: {E.
e o,
9%
b, 4'. .
-4
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. € _ . . .€ o .
“.'s.,;- Set u. = Uen, n=1,...,K. Choose thc o.n. elcments u for n=K+1,...,M
SykS such that *fUSU*u;, u;> < 8+ ¢; this is possible for any M, because 8 is
::;::- the smallest limit point of the spectrum of S. One now obtains
\'.-.:

:':::' ’ £,M £ £ K M £,M
v z Tn’ 1+ <USU*un,un> 1< 7 (O-An) + Tn’ 1 +06+ ¢} =P,
BN n=1 n=1 n=K+1
N i K
Call S
[~ Moreover [ P+ 3 (h:-0)
k- , & 1 ~ 1+6] , MK =1 !
oY % Trace log (I+Ty) =% ni:l log TD\: *—>-log 1+ sepyssee
Z:“,::' For fixed e, the limit as M-+~ of thisexpression is
o)
... -V K
T4
b K P+zI(2.-9)
) L 3 log[—i-;\—e]+ 1 !
(“! n=1 n 2(1+0+¢)

Since € >0 is arbitrary, one sees that the sunremum over all ¢>0, M>K is
L ..
I equal to the upper bound nreviously obtained. That upper bound is thus the

capacity CW(P), completing the proof of (a).

-:;.:-:. The result of (b) can be obtained from the proof of (a). Since now
_;::;3' K
AN n(6 - An) > P, there exists a largest integer K such that P+ Z)‘n > K).K, by
J n 1n-
-
.-:'_f:: Lemma 3. Choose P <P and proceed as in the proof of (a) to obtain an umper
« bound on the capacity of M
o M I R pl] ®-P))
X C(P,,M) =% ¢ 1log + L
i 1 = M(T+7,) J T+96
% M
O where M is the largest integer (note M<XK) such that P1 *IN, 2 My Defining
R - 17
(2 P! as in th £ of (a), th cP M) d i M
Sedis 1 e proof of (a), the sequence (C[ 1° ]) is non-decreasing as
A
A ) . . X K
:_; increases, and since K is the largest integer such that P+ {x n> KAK, one has
"t
"" that C[P,K] is an upper bound on the capacity. This is the value of the
:;::: capacity, from (b) of Lemma 4, when S- 6I is negative definite (i.e., P=P,;).
:'.:‘:C (c) follows from Lemma 5.
s
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e
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'I'h;/{tatement of (d) that the capacity cannot be attained when S - 6I is

non-negative definite (part (c)) can be proved by noting that

1 l/, 1 2 - 2 ‘
Ry = Rg(S- 8L+ (1+8)I)2U*, Thus ||x||N = ||RN!§XH j

- - 2 - 2
< (JIS-98I+ (1+0)I}] 1)||RW%XH" < (1+0) 1||x||‘:J. A solution attaining

the capacity P/[2(1+¢)], subject to the constraint F,u IJA(x) ||‘3 < P, would thus
X

satisfy the constraint Eu [|A(x) Hé < P/(1+6); this is impossible, by
X

[1, Theorem 2].

The statements in (d) on attaining the capacity in narts (a) and (b)
follow directly from corresponding statements in Lemma 4, as follows. The fact
that the capacity in (a) cannot be attained when {) n,nzl} is an infinite set
follows from the fact that P1=P (in the proof of (a)) uniquely gives the
capacity, and this gives the same result as when S - 81 is negative definite.
The fact that the capacity cannot then be attained is contained in part (a) of

Lemma 4. If {An,nzl} is a finite (nonempty) set, then the capacity is uniquely

K
obtained by setting P - Py =P+ Z(Xn - 8), corresnonding to the constraint
1

Trace T%[Ql+ QlUSU*Ql]T%’. Since Q'+ 0*USU*Q' is non-negative definite,
application of the result for part (c) shows that the capacity cannot be
attained. Finally, the statements on attaining canacity in case (b) follow
directly from part (b) of Lemma 4, since the capacity in (b) is uniquely obtained
by setting P, =P, equivalent to S- 6I being negative definite.

M
Corollary 3: If 8 = «, then CW(P) has the value given in Theorem 3(b),

and can be similarly attained.

Proof: Apply Proposition 2 and the proof of Theorem 3(b).
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Comparison of CW(P) and CN(P)

For the finite-dimensional channel, the capacity Cw(P) given in Theorem

M
1 is strictly greater than CN(P) (=% log [1+P/M]) if ZBi < 0, or if
1ic

K . . .
P+ %81 < 0. Gy(P) = Gy(P) if 0<8) <By. The verification is omitted.

For the infinite-dimensional channel, a general statement can be made if

{)\n,nzl} is empty. Then, CW(P) > CN(P) if <0, CW(P) < CN(P) if 6>0, CW(P) = CN(P)

if 6=0; see Theorem 2 (a) and Theorem 3 (c). Note that CN(P) = P/2 for the
unconstrained channel [1, Theorem 2].
If {An,nzl} is not empty, then for the unconstrained channel the value of

CW(P) given in Theorem 3(a) is greater than -2-(1%-@— , using log x'l 2 1-x. This

inequality can also be shown for the value given in Theorem 3(b), proceeding as
in the proof of part (b) of the Theorem in [2]. Thus, for the unconstrained

channel, CW(P) > CN(P) if 8<0 and {An,nzl} is not empty. A similar result can

be obtained for the constrained channel.
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Discussion

The mismatched channel differs from the matched channel in several ways.
First, the value of the capacity can be very different, as already seen.
Secondly, the problem of attaining capacity is much more significant. FEven in
the finite-dimensional channel the vectors Upseo-slhy must be a specific set of
vectors, not just any o.n. set. If H2 is infinite-dimensional with
dim[supp(pA(X))] < M, the situation is even worse in (c) of Thcorem 2. That

is, capacity can then be attained only if S has zero as an eigenvalue of mul-

tiplicity > M when S < 81, or of multiplicity > M-¥ when S has K < M

K
eigenvalues Yy < ... <A <8 and P + I\ 2 KAK. Otherwise, in order to
N - 1

apnroach capacity, one will need to put part of the available "energy" P in

elements (Uen) where (en) are eigenvectors of S corresponding to successively

smaller eigenvalues. In practical applications, this typically corresnonds to
cigenfunctions at higher and higher frequencies.

For the infinite-dimensional channel without a constraint on dim[supp(qu)].
again there can be significant differences between Cy(P) and CN(P), denending
on {4; xn, nx1}. However, in this case one sees a rather different situation in
the problem of attaining capacity. CN(P) can never be attained; Cy(P) can be
attained if and only if {xn,n?l} is not emty and P < zn(e-xn).

I't may be noted that the results given in Theorem 1 and Theorem 2(b) are
similar to those obtained in [4, p. 170], although the developments are quite
different. However, these previous results are given in terms of a constraint on
EHA(X)IIZ, and assume that the noise variance components can be arranged in
ascending order. This can only be done if the channel is finite-dimensional.
In that case, one can take Ry=1, the identity, and thereby use a true power
constraint. (A-2) then becomes Ry = T+S, and the capacity is as given

in Theorem 1; this agrees with the referenced results in [4].
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Applications and Extensions

The results given here provide a complete and general solution to the
information capacity problem for the Gaussian channel without feedback,
so long as the constraint can be given in terms of any covariance (or
RKHS norm). Moreover, the formulation of the problem as developed here,
and the availability of these results, are already leading to a number
of related results, and additional applications and extensions seem likely.

For example, it is well-known that feedback does not increase infor-
mation capacity of a large class of matched Gaussian channels, including
the '"white noise'" (Wiener process as noise) channel [6], [15]. It can be
shown, using the results given here, that capacity is increased by feedback
for a large class of mismatched channels, thus validating a long-held conjec-
ture. In another direction, as discussed above, these results enable one
to analyze jamming channels when information capacity is used as the cri-
terion. Other related results can also be obtained, based directly or
indirectly on the formulation and results given here. Examples include
capacity-per-unit time for mismatched channels with and without feedback,
coding capacity for various types of channels, and new relations between
optimum filtering and optimum transmission in the Shannon sense.

The framework used here requires that the signal and noise sample
functions lie in a real separable Hilbert space. This is easily extended

to separable Banach spaces, such as C[0,1] (see [1, p.88]).
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A Proot of Lemma 1:  Deblne iM. R” + R by t‘,\i(x) = nillog (1 ¥y Yp ]. fM is to
...:\.‘, =
ot
e be maximized subject to the constraints
‘-.-
C M
gy) =¥y, -P<0
b :‘:* 1
N .
"; hi(X) = -yi_<_0, i=1,...,M
. This is a constrained optimization problem with objective function fM which is
gy 3
:};-_. strictly concave over the convex set {Z in R“I; Zi_>_0, i=1,...,M}. Moreover,
L
‘: ;'-_-:- cach constraint function is linear. Thus, a solution to this problem will define a
Loy
e unique ¢lobal maximum for fM[14]. In order that y* be this unique solution, it is
:::-:: necessary and sufficient that the following set of equations be satisfied [141:
vf.,:c'
-:\1:, 1 ) _ .
[ )7’;77; + 8 a; = 0 i=1,...,M (a-1)
.
i M M
} 1 yh-P <0, 8[213 yr-Pl =0 (a-2)
ey
“ -y’i‘ <0, aiy’{ =0,1i=1,...,M (a-3)
L
.
,.:.: for some set of non-positive real numbers {8, TRER A
N : .
'O First, attempt to obtain a solution by setting Ay = ay = ... =, = 0.
—“ This requires B(Yi*y’;) = -1 for i = 1,...,M; thus,
2 M M q M M
o Ty*+ Ly, =-MR ", and so y* = (Dy*+ I vy.)/M- ¥y
::.‘;_.- 1 1 1 1 n 1 1 1 1 n
'-." forn=1,2,...,M. This definition of ):* and the constraints (a-3) require that
.,-'d:
e ;I" 4 1;‘1 - M
p Y 1 yi 1 Yi ) Yﬂ
.. for n <M; this inequality is satisfied for all n<M if and only if it is satisfied
>, - M
a0 for n=M. Also, ¢ 1. -(y’i‘+y.) for i - M implies - 0, so that J y%¥ = P by
509 1 171
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Sy A1)
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M . c e
constraints (a-2).1Thus, if7F% T vy - MYH, an optimum solution is given by
1

M
yp= eIy - MM, .
K
If there exists K <M such that Kyp < P+ Iy; < (K + 1)YK+1’ then
1
. K
constraints (a-1)=-(a=3) are satisfied by choosing 8 = -K[P+ EYi] ’
1
a4 T % = = oy = 0,
K
ok =
N
v¥=10, i>K
i
% = K'l[p+§ -Ky.], i<K
yl 1‘Yn Yi ’ =
K. -1 .
qi = -K[P{'%‘Yn] 1 + 'Yi N i>K.
Thus,
M 2 K
sup I (p+ X ) /v, = 0 (Zv; +P)/(Ky,)
{X: £ X~ <P}
~ 1 n—
K
where K <M is vthe largest integer such that Ly; + P > Kyg- The sunremum is
1 Z
attained by y* as defined above, or for
< ) ¢
X, = [P+ fvi]/K " Y n<K
=0 n>K.

Proof of Lemma 2: Note that fl((l/) increases with decreasing Yn for 1<n<K,

K K K
using o v; +P > Ky. Also, one can assume that I y = I
1 n=1 n=1

Y, To sec this,
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) K K G)

:: suppose that I Y, > Ay Define admissible sequences (y J ), j>1, as

. n=1 n=1 n -

follows. Y(l) = Yn’ 1<n<K. Given (Yr(lj)), let pj be the largest integer
- >~ K such that = (YU) -A,) =0, If no such integer exists for j=1, set
n=1

p,=0. Define (Y(j+l)) by

> 1 n

G+1) . ()

:5. Yn “ Yn nipj

[~ ‘Y(j)-e. P <n<K

A n J

) :

) where

2 ;

q (:.=min{J_1 ) (IEJ)‘A) pj<JiK}

f J PJ n-pJ+1

. (G+1)y . : . .

- To sec that (y ) is non-decreasing, it suffices to check that
} (”1) - YU+1). This holds because €. < Y(J) - Y(J), noting that
! Do+l p. j—- +1 p-
K l J J J
R ‘ > A > y(j) and ¢. < (J) A Also % (Y(j+1) A ) >0 for
N ‘p.+l 2 Yp. 2 Tp. +1 7 Tp.+lt Y i Z

:. p) p_] p_] - p_] pJ n=l 0 n
\' .
1 .J<K: by the similar property for (YISJ)) for Jipj; by the definition of Ej

& K : K

's-; if J-v. Finally, & (j+1)+p=v (J) +P=- (K-p. . - - €.

g i Jpy. Finally, &y l(YJ- ) (K-pyle; > Kyy - (K-p; ey

- Kw,}((j) - Kej = KYIEJH). The sequence (yr(11+1)) is thus admissible.
:: Since Pj+l > pj, the above procedure must terminate in at most K- Py
> o1 . ’ o1 .
‘ steps. Moreover, YISJ ) < ngj) for 1<n<K, so that fK[(YrgJ ))] > f}([(YrgJ))]°
N
Ny K K K K
N Assuming now that Z Y, =LA it is sufficient to show that Il Yo 2 1Ay
v 1 1 1 1
.’
b with equality if and only if Yo = A l<n<K.
,-".'
A

N ]
Al
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o
Y
A
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pefine (3{1)) = (v )3 given (8)) such that

(»*rg’i)) # (1)), define (Br(1J+1)) as follows. Let bj be the largest integer i
such that Bi(j) # ki; necessarily X‘b > Blgj). Let aj be the largest integer
j )

1 such that ')‘i < B§J). Let Aj = min (.ij - Béj), Bé-}) - xuj). Define the

sequence (‘SIEJ +1) ) by

LU+ _ () .
n EN n ¢ {dj,bj}
10+ _ 3(0)
T TR
J J
(U _ ()
a Y °jc
J J

=~

| N K . . .

Clearly ¢ 5,&'”1) = BIEJ) = g Ane Since Bérl) > Bé-]) > Y and
n=1 n=1 n=1 j j j

,-,(-.”1) ‘ Sg) < Vg and (yn) is non-decreasing, Béj:ﬂ) > BL(‘J'H). Thus,

d. —

] J J j j
X
“.'n " n n . )
=] n#a..,b. n=1 n#a.,b.
n # 5P j j # 50 j j

K . . . .

- )Y 20) . . - (J) : . 200) 2 ey -
n;lyn . Sn _>_>\n if Yn>.\n, ,\nicn 2 Y if Yn<)‘n’ '?'n 'Xn if vy . =x_,
these relations holding for all j>1. There are at most K elements (yn) such

that "n# and the number of such elements is reduced by at least one

“n?
whenever the sequence (Br(ljﬂ) is formed from (BIEJ)). The procedurc must

termainate in at most K steps, and will terminate when and only when a scquence
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(Béj)) is formed with (Béj)) = (AnJ. Since

K

n=1

34
K
z

. K
B£J) =5 An and
n=1 1

. K .
D D ) : ,
“n < nilin for all j>1, one has that fK(l) > fK(l)°

.
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